Chloride channel function is linked to epithelium-dependent airway relaxation.
نویسندگان
چکیده
We previously reported that substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of mouse tracheal smooth muscle. Since both SP and ATP are known to evoke transepithelial Cl- secretion across epithelial monolayers, we tested the hypothesis that epithelium-dependent relaxation of mouse trachea depends on Cl- channel function. In perfused mouse tracheas, the responses to SP and ATP were both inhibited by the Cl- channel inhibitors diphenylamine-2-carboxylate and 5-nitro-2-(3-phenylpropylamino)benzoate. Relaxation to ATP or SP was unaffected by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), and relaxation to SP was unaffected by either DIDS or DNDS. Replacing Cl- in the buffer solutions with the impermeable anion gluconate on both sides of the trachea inhibited relaxation to SP or ATP. In contrast, increasing the gradient for Cl- secretion using Cl- free medium only in the tracheal lumen enhanced the relaxation to SP or ATP. We conclude that Cl- channel function is linked to receptor-mediated, epithelium-dependent relaxation. The finding that relaxation to SP was not blocked by DIDS suggested the involvement of a DIDS-insensitive Cl- channel, potentially the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. To test this hypothesis, we evaluated tracheas from CFTR-deficient mice and found that the peak relaxation to SP or ATP was not significantly different from those responses in wild-type littermates. This suggests that a DIDS-insensitive Cl- channel other than CFTR is active in the SP response. This work introduces a possible role for Cl- pathways in the modulation of airway smooth muscle function and may have implications for fundamental studies of airway function as well as therapeutic approaches to pulmonary disease.
منابع مشابه
Osmotic regulation of airway reactivity by epithelium.
Inhalation of nonisotonic solutions can elicit pulmonary obstruction in asthmatic airways. We evaluated the hypothesis that the respiratory epithelium is involved in responses of the airways to nonisotonic solutions using the guinea pig isolated, perfused trachea preparation to restrict applied agents to the mucosal (intraluminal) or serosal (extraluminal) surface of the airway. In methacholine...
متن کاملThe effect of L-arginine on guinea-pig and rabbit airway smooth muscle function in vitro.
We have investigated the effects of L-arginine, D-arginine and L-lysine on airway smooth muscle responsiveness to spasmogens in vitro. Both L-arginine and D-arginine (100 mM) significantly reduced the contractile potency and maximal contractile response to histamine but not to methacholine or potassium chloride in guinea-pig epithelium-denuded isolated trachea. Similarly, the contractile respon...
متن کاملTracheal epithelium cell volume responses to hyperosmolar, isosmolar and hypoosmolar solutions: relation to epithelium-derived relaxing factor (EpDRF) effects
In asthmatic patients, inhalation of hyperosmolar saline or D-mannitol (D-M) elicits bronchoconstriction, but in healthy subjects exercise causes bronchodilation. Hyperventilation causes drying of airway surface liquid (ASL) and increases its osmolarity. Hyperosmolar challenge of airway epithelium releases epithelium-derived relaxing factor (EpDRF), which relaxes the airway smooth muscle. This ...
متن کاملChloride channel blockers promote relaxation of TEA-induced contraction in airway smooth muscle
Enhanced airway smooth muscle (ASM) contraction is an important component in the pathophysiology of asthma. We have shown that ligand gated chloride channels modulate ASM contractile tone during the maintenance phase of an induced contraction, however the role of chloride flux in depolarization-induced contraction remains incompletely understood. To better understand the role of chloride flux u...
متن کاملTemporal regulation of CFTR expression during ovine lung development: implications for CF gene therapy.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a small conductance chloride ion channel that may interact directly with other channels including the epithelial sodium channel (ENaC). CFTR is known to be more abundant in the airway epithelium during the second trimester of human development than after birth. This could be a consequence of the change in function of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 280 2 شماره
صفحات -
تاریخ انتشار 2001